
  

Mathematical Logic
Part Two



  

Recap from Last Time



  

Take out a sheet of paper!



  

What's the truth table for the → connective?



  

What's the negation of p → q?



  

∃ is the existential quantifer 
and says “for some choice 
of m, the following is 

true.”

∃ is the existential quantifer 
and says “for some choice 
of m, the following is 

true.”

Some muggle is intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

Some Technical Details



  

Variables and Quantifers

● Each quantifer has two parts:
● the variable that is introduced, and
● the statement that's being quantifed.

● The variable introduced is scoped just to 
the statement being quantifed.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))
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Variables and Quantifers

● Each quantifer has two parts:
● the variable that is introduced, and
● the statement that's being quantifed.

● The variable introduced is scoped just to 
the statement being quantifed.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x 
just lives 
here.

The variable x 
just lives 
here.

A diferent variable, 
also named x, just 

lives here.

A diferent variable, 
also named x, just 

lives here.



  

Operator Precedence (Again)

● When writing out a formula in frst-order logic, 
quantifers have precedence just below ¬.

● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)

is parsed like this:

(∃x. P(x))  ∧  (R(x) ∧ Q(x))
● This is syntactically invalid because the variable x is 

out of scope in the back half of the formula.

● To ensure that x is properly quantifed, explicitly put 
parentheses around the region you want to quantify:

∃x. (P(x) ∧ R(x) ∧ Q(x))



  

“For any natural number n,
n is even if and only if n2 is even”

  



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifer 
and says “for any choice of 
n, the following is true.”

 ∀ is the universal quantifer 
and says “for any choice of 
n, the following is true.”



  

The Universal Quantifer

● A statement of the form

∀x. some-formula

is true if, for every choice of x, the statement 
some-formula is true when x is plugged into it.

● Examples:

∀p. (Puppy(p) → Cute(p))

∀a. (EatsPlants(a) ∨ EatsAnimals(a))

Tallest(SultanKösen) →
∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))



  

The Universal Quantifer

∀x. Smiling(x)
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The Universal Quantifer

∀x. Smiling(x)

Since Smiling(x) 
is true for every 
choice of x, this 

statement 
evaluates to true.
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The Universal Quantifer

∀x. Smiling(x)

Since Smiling(x) is 
false for this choice 
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The Universal Quantifer

∀x. Smiling(x)
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evaluates to false.



  

The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))
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The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the 
statement true or 

false?

Is this part of the 
statement true or 

false?



  

The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 
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The Universal Quantifer

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall 
statement true or 

false in this 
scenario?

Is this overall 
statement true or 

false in this 
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  ∀x. Smiling(x)

Fun with Edge Cases



  ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantifed 
statements are vacuously true 

in empty worlds.

Universally-quantifed 
statements are vacuously true 

in empty worlds.



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating defnitions and theorems to 
learn more about them.

● Need to take a negation? Translate your 
statement into FOL, negate it, then 
translate it back.

● Want to prove something by contrapositive? 
Translate your implication into FOL, take 
the contrapositive, then translate it back.



  

Translating Into Logic

● Translating statements into frst-order 
logic is a lot more dificult than it looks.

● There are a lot of nuances that come up when 
translating into frst-order logic.

● We'll cover examples of both good and bad 
translations into logic so that you can learn 
what to watch for.

● We'll also show lots of examples of 
translations so that you can see the process 
that goes into it.



  

Using the predicates

   - Puppy(p), which states that p is a puppy, and
   - Cute(x), which states that x is cute,

write a sentence in frst-order logic that means “all puppies 
are cute.”



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))
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An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This frst-order 
statement is false even 

though the English 
statement is true. 

Therefore, it can't be a 
correct translation.

This frst-order 
statement is false even 

though the English 
statement is true. 

Therefore, it can't be a 
correct translation.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

The issue here is that 
this statement asserts 
that everything is a 
puppy. That's too 

strong of a claim to 
make.

The issue here is that 
this statement asserts 
that everything is a 
puppy. That's too 

strong of a claim to 
make.



  

A Better Translation
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A Better Translation

All puppies are cute!
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is true only when 
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every choice of x.

A statement of the 
form

 

∀x. something
 

is true only when 
something is true for 
every choice of x.



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:

Universally-quantifed statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, 
it must have property P 
but not have property Q.

If x is a counterexample, 
it must have property P 
but not have property Q.



  

Time-Out for Announcements!



  

Checkpoints Graded

● The Problem Set One checkpoint 
problem has been graded. Feedback is 
now available in GradeScope.

● You need to look over our feedback 
as soon as possible.
● The purpose of the checkpoint is to help you 

see where to focus and how to improve.
● If you don’t review the feedback you 

received, you risk making the same mistakes 
in the future.



  

Back to CS103!



  

Using the predicates

   - Blobfsh(b), which states that b is a blobfsh, and
   - Cute(x), which states that x is cute,

write a sentence in frst-order logic that means “some 
blobfsh is cute.”
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An Incorrect Translation
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An Incorrect Translation

Some blobfsh is cute.

∃x. (Blobfsh(x) → Cute(x))

The issue here is that 
implications are true 

whenever the antecedent is 
false. This statement 

“accidentally” is true because 
of what happens when x 

isn't a blobfsh.

The issue here is that 
implications are true 

whenever the antecedent is 
false. This statement 

“accidentally” is true because 
of what happens when x 

isn't a blobfsh.
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“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition:

Existentially-quantifed statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it 
must have property P on 

top of property Q.

If x is an example, it 
must have property P on 

top of property Q.



  

A Correct Translation

Some blobfsh is cute.
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Slight aside: blobfsh 
actually look totally normal 
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Your call :)
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● The ∃ quantifer usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
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∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns 
to memory. We’ll be using them 

throughout the day and they form the 
backbone of many frst-order logic 

translations.
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Let’s take a fve minute break!



  

What we’ve covered:

● Set theory
● Element of, subset of
● Combining sets (union, intersection, etc.)
● Power set
● Cardinality

● Mathematical proofs
● Direct proofs
● Indirect proofs



  

Why?

● Set theory is a language we can use 
to pin down abstract concepts

● Largely, discrete math is a set of 
tools to help us answer really 
interesting questions

● Broadly applicable approach to 
problem solving



  

Let’s do a proof together!



  

Theorem: If A and B are sets, then ℘(A) ∩ ℘(B) = ℘(A ∩ B).
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Proofwriting Strategies

● Articulate a Clear Start and End Point
● What are you assuming? What are you trying to 

prove?
● Write Down Relevant Terms and 

Defnitions
● Identify existing tools to help you get from your 

starting point to your ending point
● Work Backwards

● Use your end goal to fgure out intermediate steps 



  

Theorem: If A and B are sets, then ℘(A) ∩ ℘(B) = ℘(A ∩ B).
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● In general to show that S = T, 

show that S ⊆ T and T ⊆ S
● In general to show that S ⊆ T, 

pick an arbitrary x ∈ S, show that 
x ∈ T
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half of this proof!

Good exercise: Try doing the other 
half of this proof!



  

Next Time

● First-Order Translations
● How do we translate from English into frst-order logic?

● Quantifer Orderings
● How do you select the order of quantifers in frst-order 

logic formulas?
● Negating Formulas

● How do you mechanically determine the negation of a 
frst-order formula?

● Expressing Uniqueness
● How do we say there’s just one object of a certain type?
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